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Abstract

Flow-based control of a thermal system with a long duct and heat loss to the environment is analyzed. A Propor-

tional-Integral controller is used to regulate the duct outlet temperature by using the flow velocity as control input. The

one-dimensional energy equation in Eulerian and Lagrangian forms are numerically solved. The non-linear dynamics

can be represented by an integral equation in terms of the residence time which acts as a delay. A linear stability analysis

leads to a characteristic transcendental equation which is examined for different orders of the residence time. Pontry-

agin�s theorem on the zeros of exponential polynomials is used to obtain stability maps as a function of system param-

eters. Numerical simulations are performed to verify the predictions, determine super- and sub-critical instabilities, and

evaluate the amplitude and frequency of limit-cycle oscillations.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Control of fluid temperature at a specific location is

of importance in many domestic and industrial applica-

tions. This is often achieved by transporting fluids such

as steam or chilled water through a long duct to distant

heat exchangers. In many of these cases, it is desired to

have control of the fluid temperature at the outlet by

varying its flow rate. The fluid takes time to travel the

length of a long duct and, as a result, there is a delay be-

tween the inlet and the outlet conditions which affects

the dynamics of the system. The effect of this should

be taken into account in designing a thermal control

system.
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Though the effect of delay has been studied in differ-

ent fields, the literature contains few applications to

thermal systems. One early work was that of Munk

[1], and since then a small number of papers have ap-

peared in the literature. Heat exchangers have been stud-

ied by Górecki and Jekielek [2] and Huang et al. [3].

Zhang and Nelson [4] modeled the effect of a variable-

air-volume ventilating system on a building using delay,

and Antonopoulos and Tzivanidis [5] developed a corre-

lation for the thermal delay of buildings. In duct flows,

Saman and Mahdi [6] analyzed pipe and fluid tempera-

ture variations due to flow, and Chow et al. [7] modeled

the thermal behavior of fluid conduit flow with transpor-

tation delay. The delayed hot water problem has been

studied by Comstock [8]. Chu [9] described the applica-

tion of a discrete optimal tracking controller in an indus-

trial electrical heater with pure delay, and Chu et al. [10]

studied a time-delay control algorithm for the same hea-

ter. There are also publications on the effect of delay in

process engineering such as the book by Ogunnaike and
ed.
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Fig. 1. Schematic of duct.

Nomenclature

A amplitude of oscillations

c specific heat at constant pressure [J/kgK]

D diameter [m]

f frequency of oscillations

f, g arbitrary functions

F, F* transcendental functions

h convective heat transfer coefficient [W/m2K]

Kp, Ki constants of PI control

L length [m]

N number of divisions for computation

T temperature

t time

Dt time step

v velocity

x longitudinal coordinate

Dx spatial step

Greek symbols

e vDt/Dx
q fluid density [kg/m3]

r eigenvalue

s residence time

x radian frequency

Subscripts and superscripts

in, out inlet and outlet, respectively

1 ambient

ð Þ steady-state value

r, i real and imaginary parts, respectively

* dimensional quantity
0 small perturbation
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Ray [11] which provides an overview of process dynam-

ics and control.

One-dimensional duct flow can be described by a

first-order hyperbolic partial differential equation. This

can be solved analytically by the method of characteris-

tics [12,13] or numerically by finite differences [14],

Galerkin with Legendre polynomials [15], or orthogonal

collocation [16]. Several algorithms have been proposed

for control of the different variables. Early research was

based on the lumped-parameter model which results in

an ordinary differential equation [17] to which control

strategies can be applied. Wysocki [16] used orthogonal

collocation to control first-order hyperbolic systems. In

addition, there have been other applications of control

methods for distributed parameter systems described

by partial differential equations [18,19].

Systems with delay are infinite-dimensional and their

stability analysis usually leads to transcendental equa-

tions with an infinite number of roots. The solution of

these equations to locate their roots is of interest in

determining the stability of a system; see for example

[20–22] and the literature cited therein. In [23], a tran-

scendental equation has been solved to construct a PI

controller to stabilize first-order plants with input delay.

In [24], the thermal aspects of long duct flows with con-

stant mass flow have been addressed.

In this work temperature control at the outlet of a

long duct by manipulation of the flow velocity is studied.

The problem would have been linear if either the inlet or

ambient temperature were the control input, but in the

present case it is non-linear [25–27]. The residence time

of the fluid in the duct is variable leading to a variable

delay between the moment the fluid enters and when it

leaves the duct. The controller changes the fluid velocity
and through that the residence time. Linear stability

analysis will be carried out with small perturbations

while non-linear effects will be determined numerically.
2. Governing equations

Let us consider a duct of constant cross-section sche-

matically shown in Fig. 1 where the flow is driven by a

variable-speed pump. The fluid inlet temperature Tin is

kept constant, and there is heat loss to the ambient at

temperature T1 through the surface of the duct. To ena-

ble a simplified, one-dimensional analysis, the assump-

tions that the velocity and temperature are uniform

over the cross-section of the pipe, and that the flow is

hydrodynamically and thermally fully developed are

made. The physical properties of the fluid and the coef-

ficient of heat transfer to the ambient are also constant.

Though it is not necessary to write or solve the govern-

ing equations in both Eulerian and Lagrangian frames

since they are equivalent, it is instructive and useful to

do so.

2.1. Eulerian

On neglecting axial conduction, energy conservation

gives [24]
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oT �

ot�
þ v�

oT �

ox�
þ 4h
qcD

ðT � � T �
1Þ ¼ 0; ð1Þ

where T*(x*, t*) is the fluid temperature, t* is time, x* is

the distance along the duct measured from the entrance,

v*(t*) is the flow velocity, h is the coefficient of heat

transfer to the exterior, q is the fluid density, c is its spe-

cific heat at constant pressure, and D is the hydraulic

diameter of the duct. The duct is assumed to be of uni-

form cross-section so that for an incompressible fluid the

flow velocity v* is not a function of x*. Also v* is taken to

be always positive, so that the x* = 0 end is always the

inlet; this fixes the boundary condition as T �ð0; t�Þ ¼
T �

in. The temperature of the fluid coming out of the duct

is T �ðL; t�Þ ¼ T �
outðt�Þ, where L is the length of the duct.

Using the non-dimensional variables x = x*/L, T ¼
ðT � � T �

1Þ=ðT �
in � T �

1Þ, t = t*4h/qcD, and v = v*qcD/hL,

Eq. (1) becomes

oT
ot

þ v
oT
ox

þ T ¼ 0; ð2Þ

with T(0, t) = 1. This is an equation in T(x, t) if v(t) is

known. After the initial startup period in which the fluid

within the duct is flushed out, the general solution is

T ðx; tÞ ¼ e�tf x�
Z t

0

vðsÞds
� �

; ð3Þ

where f is an arbitrary function. Applying the boundary

condition at x = 0 gives

1 ¼ e�tf �
Z t

0

vðsÞds
� �

: ð4Þ

In general, f is an implicit function of t and cannot be

explicitly determined and thus cannot be eliminated be-

tween the two equations. The temperature at the outlet

of the duct, i.e. at x = 1, is

T outðtÞ ¼ e�tf 1�
Z t

0

vðsÞds
� �

: ð5Þ

Eqs. (4) and (5) must be simultaneously solved to get the

outlet temperature Tout(t) in terms of the flow velocity

v(t).

2.2. Lagrangian

In this formulation, Eq. (2) becomes

DT
Dt

þ T ¼ 0; ð6Þ

where D/Dt = o/ot + vo/ox is the derivative following

the fluid. Since the inlet temperature is unity, this can

be integrated as

T ðtÞ ¼ e�t; ð7Þ

to give the temperature of a fluid particle t units of time

after it has entered the duct.
At the outlet this becomes

T outðtÞ ¼ e�sðtÞ; ð8Þ

where s(t) is the residence time, i.e. the time taken for a

fluid particle to go from inlet to outlet. Since the fluid

exiting the duct at time t was within the duct during

the interval from the instant t � s to the present, we also

haveZ t

t�s
vðsÞds ¼ 1: ð9Þ

If v(t) is known, this defines the residence time s(t) which
can then be substituted into Eq. (8) to determine the out-

let temperature.

2.3. Discussion

Both formulations have their advantages: the Eule-

rian shows the explicit effect of advection and the

Lagrangian the residence time. To show that the two

formulations are equivalent, Eqs. (5) and (8) can be

combined to give

f 1�
Z t

0

vðsÞds
� �

¼ et�s; ð10Þ

which in principle can be inverted as

1�
Z t

0

vðsÞds ¼ gðet�sÞ: ð11Þ

On the other hand, Eq. (4) gives

�
Z t

0

vðsÞds ¼ gðetÞ: ð12Þ

ThusZ t

t�s
vðsÞds ¼

Z t

0

vðsÞds�
Z t�s

0

vðsÞds

¼ gðet�sÞ � gðetÞ ¼ 1; ð13Þ

which is Eq. (9).

In the previous solutions, v(t) has been assumed to be

known. However, in a control problem in which the flow

velocity is the control input, it is related to some func-

tion of the error through an additional equation that

governs the controller. It must be pointed out also that

in that case, Eq. (2) is non-linear and Eq. (9) has a

dependent variable s(t) in one of the limits of the

integral.
3. Numerical solutions

Simulations are used to solve the non-linear problem

to determine the temperature T(x, t), flow velocity v(t)

and residence time s(t). When necessary, the duct is ini-

tially assumed to be at unit temperature so that the ini-

tial condition is T(x, 0) = 1.
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3.1. Procedures

Discretizing in space and time, a finite-difference

approximation can be used to solve the Eulerian formu-

lation Eq. (2). An upwind scheme gives

T jþ1
i ¼ ð1þ Dt � eÞT j

i þ eT j
i�1: ð14Þ

The subscripts increase in the flow direction and denote

discretization points in space, superscripts denote time,

e = vD t/Dx, Dt is the time step, and Dx = 1/N is the spa-

tial grid size, where N is the number of uniform spatial

divisions. The Courant–Friedrichs–Lévy condition [14]

for stability of the numerical scheme is Dt 6 Dx/
max{v(t)}.

To solve the Lagrangian Eq. (6), the duct is discre-

tized only in space. The time interval that takes the fluid

particle at any grid point to the downstream neighboring

grid point is

Dtj ¼ Dx
v
: ð15Þ

On following a fluid particle, the solution of Eq. (6),

over this interval of time gives

T j
i ¼ T j�1

i�1 expð�DtjÞ: ð16Þ

Thus Dx is fixed, but Dtj at each time step is determined

from Eq. (15). If v is not given but related by an addi-

tional control equation, it is possible to use either an ex-

plicit procedure in which v = vj � 1 (i.e. at the previous
Fig. 2. Open-loop response: temporal dependence of temperature
time step), or implicit where v = vj. The latter is used

here with a suitable number of iterations until there is

convergence in vj.

3.2. Validation

To reduce the possibility of numerical errors in the

results, especially in the sensitive sub-critical computa-

tions, the numerical solutions should validated. As a

steady-state test, the analytical solution of the tempera-

ture distribution for constant velocity is checked against

the numerical. For time-dependent v, solutions from the

Eulerian and Lagrangian methods described above were

compared for

vðtÞ ¼
0:5 for t6 1;

2 for t > 1:

�
ð17Þ

Both formulations converged for increasing N, and a

value of 100 will be used in the computations. However,

since the Lagrangian method uses the exact solution to

compute the particle temperature as it moves, it is more

accurate in the representation of temperature distribu-

tions that are not differentiable in space and for this rea-

son it is used for the computations that follow.

3.3. Open-loop dynamics

Figs. 2 and 3 show the temporal and spatial charac-

teristics of T(x, t) for v(t) in Eq. (17). The steady-state
T(x, t) at different locations for step change in v(t) at t = 1.



Fig. 3. Open-loop response: spatial dependence of temperature T(x, t) at different times for step change in v(t) at t = 1.
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temperature distribution for a constant vðtÞ ¼ �v is

T ðxÞ ¼ e�x=�v, so that T out ¼ e�1=�v. T(x, t) and Tout(t) ap-

proach T ðxÞ ¼ e�x=0:5 and T out ¼ e�1=0:5 up to t = 1; after

that they tend to T ðxÞ ¼ e�x=2 and T out ¼ e�1=2. The tem-

perature pattern is seen to advect downstream due to the

fluid motion as well as decrease due to heat loss to the

ambient. The control system has to deal with both these

phenomena.
4. Outlet temperature control

The objective of control is assumed to be the regula-

tion of the outlet temperature, Tout, to a constant value

by altering the flow velocity v(t). Since 0 < s < 1, Eq.

(8) shows that 1 > Tout(t) > 0. Thus only this range of

values of the outlet temperature can be reached by var-

ying the flow velocity, and that it is controllable at most

within this range. This is in contrast to a controllable lin-

ear system where in theory its state can be changed from

any value to any other.

Variables for the desired steady state of the system

are indicated by overbars, i.e. v ¼ �v, s ¼ �s and

T out ¼ T out. From Eqs. (8) and (9) they are related by

T out ¼ e��s and �v�s ¼ 1. By changing v(t) it is desired to

maintain T out as the outlet temperature in spite of any

disturbances. Different strategies can be used for this
purpose, but here the commonly-used Proportional-

Integral (PI) control will be employed. In this case the

flow velocity is related to the error eðtÞ ¼ T outðtÞ � T out

by

vðtÞ ¼ KpeðtÞ þ K i

Z t

0

eðsÞds; ð18Þ

the differential form of which is

dv
dt

¼ Kp

de
dt

þ K ieðtÞ: ð19Þ
5. Linear stability analysis

The linear stability of this control system can be ana-

lyzed by applying small perturbations of the form

T outðtÞ ¼ T out þ T 0
outðtÞ, sðtÞ ¼ �sþ s0ðtÞ and vðtÞ ¼ �vþ

v0ðtÞ. Substituting in Eqs. (8) and (9), neglecting the

higher-order terms, and subtracting out the steady

states, the perturbation equations

T 0
outðtÞ þ e��ss0ðtÞ ¼ 0; ð20Þ

Z t

t��s
v0ðsÞdsþ �vs0ðtÞ ¼ 0 ð21Þ
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are obtained. From Eq. (19) and the above it can be

shown that

dv0

dt
¼ �e��s Kp

ds0

dt
þ K is

0
� �

¼ Kpe
��s

�v
ðv0ðtÞ � v0ðt � �sÞÞ þ K ie

��s

�v

Z t

t��s
v0ðsÞds: ð22Þ

Writing v0ðtÞ ¼ v̂ert, a transcendental equation

F ðrÞ ¼ r� �se��s Kp þ
K i

r

� �
ð1� e�r�sÞ ¼ 0 ð23Þ

for the eigenvalues r is obtained. In general, this has an

infinite number of roots that cannot be explicitly written

down. For stability the real part of the roots of r should

be negative. The values of the roots depend on the resi-

dence time �s and the control parameters Kp and Ki.

5.1. Pontryagin�s method

Recent work on the zeros of exponential polynomials

based on that of Pontryagin [21,23,28] will be used to

determine whether the real parts of the roots of r are

negative or not. To put the transcendental function in

an appropriate form, F �ðrÞ ¼ rF ðrÞer�s is defined so that

F �ðrÞ ¼ ðr2 � �se��sKpr� �se��sK iÞer�s

þ �se��sðKprþ K iÞ ¼ 0: ð24Þ

Eq. (24) has one extra root at the origin compared to Eq.

(23). The following theorems, slightly modified from

Silva et al. [23], give the necessary and sufficient condi-

tions for the roots of Eq. (24) to have negative real parts.

Theorem A. Let F*(r) be written as F �
r ðxÞ þ iF �

i ðxÞ,
where r = ix and x, F �

r and F �
i are real. Then, F

* = 0 has

roots in the negative half of the complex plane if and only

if the following two conditions are satisfied: (i) F �
r ¼ 0 and

F �
i ¼ 0 have only simple real roots and these interlace, and

(ii) F �
r ðdF �

i =dxÞ � F �
i ðdF �

r=dxÞ > 0, for some x in

(�1,1).

To ensure that F �
r ¼ 0 and F �

i ¼ 0 have only real

roots, the following theorem can be used.

Theorem B. Let M1 and M2 denote the highest power of

r and er, respectively, in F*(r), and � be an appropriate

constant such that the coefficient of terms of highest

degree in F �
r and F �

i do not vanish at x = �. Then, for the
equations F �

r ¼ 0 and F �
i ¼ 0 to have only real roots, it is

necessary and sufficient that in the interval

�2kp + � 6 x 6 2kp + �, F �
r ¼ 0 and F �

i ¼ 0 have

exactly M1 + 4kM2 real roots starting with a sufficiently

large integer k.

To apply the technique, it must first be shown using

B that for specific values of the parameters, F �
r and F �

i

satisfy condition A(i). The extra root r = 0 in F* = 0
must be subtracted from the total number required in

any interval by the above theorem. Writing r = ix in

Eq. (24), we have

F �
r ðxÞ¼�cosx�sðx2þ�se��sK iÞþ�se��sKpxsinx�sþ�se��sK i;

ð25Þ

F �
i ðxÞ ¼ � sinx�sðx2 þ �se��sK iÞ � �se��sKpx cosx�s

þ �se��sKpx; ð26Þ

where the principal terms are �x2cosx and �x2sinx
respectively. We choose � = p/4 such that the principal

terms do not vanish there. For k = 1, graphs of F �
r and

F �
i are plotted to find the number of zeros (excluding

the one at zero) in the interval �2kp + � 6 x 6 2kp +

�. The number increases by 4, and continues to increase

by 4 as k is increased by 1. In addition, the interlacing of

the zeros of F �
r and F �

i is clear from these graphs. This

completes condition A(i). The inequality A(ii) is also eas-

ily checked by computation. Examples of graphs of F �
r ,

F �
i and F �

r ðdF �
i =dxÞ � F �

i ðdF �
r=dxÞ are shown in [25].

5.2. Neutral stability

Eq. (23) can be used for a quantitative estimate of the

frequency of the oscillations that appear during Hopf

bifurcations. Let r and F(r) be separated into their real

and imaginary parts to give

rr � �se�sKp þ �se�sKpe
�rr�s cosri�s�

�se�sK irr

r2
r þ r2

i

þ �se�sK i

r2
r þ r2

i

ðrr cos ri�s� ri sin ri�sÞ ¼ 0; ð27Þ

ri � �se�sKpe
�rr�s sin ri�sþ

�se�sK iri

r2
r þ r2

i

� �se�sK i

r2
r þ r2

i

� ðri cos ri�sþ rr sinri�sÞ ¼ 0; ð28Þ

where r = rr + iri. For neutral stability rr = 0, so that

the above equations become

��se�sKpð1� cos ri�sÞ �
�se�sK i

ri

sinri�s ¼ 0; ð29Þ

ri � �se�sKp sin ri�sþ
�se�sK i

ri

ð1� cos ri�sÞ ¼ 0: ð30Þ

Manipulation of these equations yields

ri ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�se��sK i

p
: ð31Þ
6. Linear stability results

Three different cases can be studied for different val-

ues of �s, and for each the stability results will be deter-

mined as a function of the system parameters.
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6.1. s � 1

For small residence times, the exponentials in Eq.

(23) can be expanded to give

r ¼ � 2

Kp�s3
þ 2

�s
� 2þ K i

Kp

� �
� K i�s

2 þ K i�s
3 þOð�s4Þ:

ð32Þ

Thus r is real, and the control system is stable only if

ðK is3 þ 2Þ=Kp < 2s2ð1� sÞ. This is shown in Fig. 4 for

two different ss. It is observed that the range of stability

increases as s decreases. When s ! 0, the stability region

will cover the entire (Ki,Kp) parameter space, and the

system is unconditionally stable. This also clear from

Eq. (23), though one should be careful since s ¼ 0 in

the equation is not exactly the same as s ! 0. A vanish-

ingly small s means that the flow is fast enough so that

the time spent by a fluid particle within the duct is

negligible.

6.2. s ¼ O(1)

The transcendental Eq. (23) may now have real or

complex roots. The location of the roots and thus the

stability of the system is examined using Pontryagin�s
method; details are in [25]. The resulting stability map

in the (Ki,Kp) plane is shown in Fig. 5. The positive

and negative Ki regions are studied separately.
Fig. 4. Stability boun
(a) Ki > 0: Eq. (31) shows that real values of ri are not
possible in this parameter region meaning that there

is no portion of the neutral stability curve here.

Graphs of F(r) as well as Pontryagin�s theorem

show that F(r) = 0 has real, positive roots, so that

the system is unstable for this entire region.

(b) Ki < 0: From Eq. (31) it can be seen that neutral

stability is possible in this region. F(r) = 0 may have

complex roots; Pontryagin�s method and repeated

plotting are used to find the parameter ranges for

which they lie on the negative left half of the com-

plex plane.

6.3. s � 1

For very large s the exponentials in Eq. (23) tend to

zero, so that r ! 0. The system is stable. However,

T out ! 0 at the same time, meaning that the outlet tem-

perature tends to the ambient. The system under these

conditions, though stable, is not very useful for heating

or cooling purposes.

6.4. Discussion

The stability of the control system for s � 1, O(1) and

�1 has been investigated, and it is found that it is stable

for both large and small s, but can be unstable in the
dary for s � 1.



Fig. 5. Stability map for s ¼ 1.

Fig. 6. Effect of s for constant Ki = �5 and variable Kp.
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Fig. 7. Effect of s for variable Ki and constant Kp = �5.

Fig. 8. Outlet temperature Tout(t), flow velocity v(t), and residence time s(t) for s ¼ 1, Ki = �5 and Kp = 1.5.
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Fig. 9. Outlet temperature Tout(t), velocity v(t), and residence time s(t) for s ¼ 1, Ki = �5 and Kp = 2.5.
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middle. The O(1) stability map shown in Fig. 5 needs fur-

ther discussion. Eq. (31) shows that loss of stability oc-

curs through two different types of bifurcations. When

Ki < 0 there are two complex roots for r that cross the

imaginary axis. This is a Hopf bifurcation that indicates

an oscillatory behavior of the system. On the other hand

if Ki = 0, then ri = 0 and a simple bifurcation occurs.

The effect of s on system stability is shown in Figs. 6

and 7 as a function of Kp and Ki respectively. In Fig. 6

large stability regions can be seen for both small and

large s. A similar behavior is also shown in Fig. 7, but

with stability possible only for Ki < 0.
7. Numerical results

To verify and extend analytical results, the dynamical

behavior of the control system in response to perturba-

tions will be examined numerically. The target tempera-

ture at the outlet of the duct was set at T out ¼ e�1, and

after having the system stabilized at a steady-state tem-

perature distribution and velocity, a small change in

the inlet velocity of the order of one percent is intro-

duced. The temperature distribution T(x, t), the flow

velocity v(t) and the residence time s(t) are determined

as a function of time. If the system is asymptotically sta-

ble, the controller brings the system back towards the

steady-state condition, and the effect of the perturbation
vanishes exponentially with time. The numerical method

cannot only examine linear stability to vanishingly small

perturbations which was studied in the previous two sec-

tions (for which the analytical and computed results

coincide), but also non-linear behavior for which the

magnitude of the perturbation determines system stabil-

ity. Thus super- and sub-critical bifurcations can be dis-

tinguished, something that cannot be done by linear

analysis. In addition, numerical results enable the

large-time dynamics of the system under unstable condi-

tions to be determined.

7.1. Super-critical bifurcations

Here the stability of the solutions near the boundary

does not depend on the amplitude of the perturbation.

Most of the stability boundaries in Fig. 5 are of this

type, and Figs. 8–14 show the response of the system

near these parts for s ¼ 1. The figures are in pairs, the

first being the behavior in the stable and the second in

the unstable side. The variables shown are Tout(t), v(t)

and s(t). Not shown is the function T(x, t) which is part

of the numerical solution and also varies dynamically in

a corresponding manner.

(a) Ki < 0 and Kp > 0 boundary: Figs. 8 and 9 show the

dynamic behavior of the system just below and

above the neutral stability line, respectively. This



Fig. 10. Amplitude A and frequency f for s ¼ 1, Ki = �5 and Kcr
p ¼ 1:912. A 1/2 power curve is shown by a dashed line in the

amplitude plot.

Fig. 11. Outlet temperature Tout(t), velocity v(t), and residence time s(t) for s ¼ 1, Ki = �30 and Kp = �7.
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Fig. 12. Outlet temperature Tout(t), velocity v(t), and residence time s(t) for s ¼ 1, Ki = �30 and Kp = �5.

Fig. 13. Outlet temperature Tout(t), velocity v(t), and residence time s(t) for s ¼ 1, Ki = �1 and Kp = 1.
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Fig. 14. Outlet temperature Tout(t), velocity v(t), and residence time s(t) for s ¼ 1, Ki = 1 and Kp = 1.

Fig. 15. Outlet temperature Tout(t) at sub-critical Hopf bifurcation for s ¼ 1, Ki = �40 and Kp = �15.
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Fig. 16. Two sub-critical limit cycles for s ¼ 1, Ki = �40 and Kp = �15.
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is a Hopf bifurcation and both figures show oscilla-

tions due to complex eigenvalues; however, in the

stable side the oscillations damp out, while on the

unstable side they grow to a finite amplitude limit

cycle. The frequency roughly corresponds to that cal-

culated from Eq. (31). As Kp and Ki move into the

unstable region, the limit cycles get larger in ampli-

tude. The amplitude and frequency of the finite-

amplitude oscillations can be numerically deter-

mined. As an example,Ki = �5 was chosen for which

the value of the parameter Kp at the stability bound-

ary is Kcr
p ¼ 1:912. For Kp � Kcr

p > 0 the time period

of the oscillations increases and the frequency

decreases. The amplitude A and frequency f are plot-

ted as a function of Kp � Kcr
p in Fig. 10.

(b) Ki < 0 and Kp < 0 upper boundary: This part of the

stability boundary is also a super-critical Hopf

bifurcation. Figs. 11 and 12 illustrate the behavior

just inside and outside the boundary; the former

shows damped oscillations and the latter oscilla-

tions that grow to a constant amplitude.

(c) Ki = 0 boundary: The eigenvalues are real, and

hence there are no oscillations in the dynamic

behavior of the system near this stability boundary.

Figs. 13 and 14 show an example of the loss of sta-

bility at this boundary for Kp > 0. Similar behavior

is also obtained for Kp < 0.
7.2. Sub-critical bifurcation

The lower stability boundary in the Ki < 0, Kp < 0

quadrant of Fig. 5 is different from the others in that

it is sub-critical Hopf. The stability depends on the

amplitude of the perturbation, and there is unstable

behavior on the linearly stable side of the boundary if

a large enough initial perturbation is provided. The dy-

namic behavior of Tout(t) in this region is shown in Fig.

15. Two different perturbations of the steady state are

shown: for a 10�3% perturbation, no growth is observed

in the response, while for 1% a steady, constant-ampli-

tude limit-cycle oscillation is reached. A similar behavior

is shown in Fig. 16 which plots the sub-critical limit cy-

cles in a (Tout,v) phase-plane projection for two different

initial conditions. Multiple long-time attractors with dis-

joint basins of attractions are observed to exist.
8. Conclusions

The PI control and stability of the outlet temperature

of a long duct are investigated here with emphasis on the

effect of the fluid residence time. The control input is the

flow velocity which makes the problem non-linear.

There is stability at the two extremes of small and large

residence times and limited, conditional stability in the
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middle. Usually delay destabilizes a system; in the begin-

ning it does so in this case also, but as the residence time

becomes very large the system becomes stable again.

This gain in stability is at the expense of the reachability

of the outlet temperature, the range of which ultimately

shrinks to zero. It is also found that the system is not

stable for any positive integral gain Ki.

Loss of stability at certain boundaries is through

complex eigenvalues; both super- and sub-critical Hopf

bifurcations are numerically found. The amplitude and

frequency of the limit cycles are important to know in

heating and cooling applications in which oscillations

may be tolerated; it may be thus possible to work with

parameter values for which the thermal system is actu-

ally unstable.

Though the Eulerian formulation Eq. (2) does not

explicitly have a delay term, the Lagrangian version, as

shown by Eq. (9), does. Caution must always be exer-

cised in the study of the control behavior of plants

modeled by partial differential equations with advective

terms. Control inputs in one place at one instant in time

affect the output behavior at another location at a later

instant. This should be kept in mind when dealing with

the thermal and flow control of more complex flows

such as boundary layers, cavities or other multi-dimen-

sional flows.
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